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We examine a linear pursuit problem under conditions of local convexity [ 11. 
We derive the necessary condition for the optimality of the time of first absorp- 
tion at all points of the space (global optimality). General sufficient conditions 

for the optimality of the pursuit time have been given in [2, 31. 

1. Let a linear pursuit problem in an n-dimensional Euclidean space R be described 

by : 
a) a linear vector differential equation 

dzldt = Cz - u + 21, u = u (t) E P, u = u(t) EQ (1.1) 

where c is a constant square matrix of order n, u and u are vector-valued functions, 
measurable for t > 0 , called the controls of the players (the pursuer and pursued, res- 

pectively), P c R and Q c R are convex compacta ; 
b) a terminal set M representable in the form M = M,, -t W,, where -11, 

is a linear subspace of space R, w, is some compact convex set in a space L being 
the orthogonal complement of M, in R . 
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We shall assume that Conditions 1 - 3 of [4] have been fulfilled for problem (1.1); 
we retain the notation of [4] in the present paper. We denote the matrix eta by @ (t), 

and a unit ball in L (its boundary is a sphere K) by S. 

2. Under additional assumptions on sufficient smoothness of the function h (z, t) 
the necessary optimality conditions in [4] can be rewritten in differential form. Namely, 

let c (t) be the function given in Lemma 2 in [4] and let D be the collection of pairs 

(z, t) E R x (0, + m) such that 

i (5 t> -c c (6 (2.1) 

(The continuity of both sides of inequality (2. I) guarantees the openness of set 0.) 
Then the following known lemmas (see p, 51) hold. 

Lemma 1. If (z, t) E D, there exists a unique vector q (z, t) EZ K such that 

n@ (t) 2 = - A (2, L) ‘Ic1 (2, t) + w (6 9 (2, Q) (2.2) 

the function $ (z, t) is continuously differentiable on D, and $ (z, T (2)) = Cp (2) 
if 0 < T (z) < + 00. 

We denote c; (z, t) = cz - u (t, ‘$ (2, r)) + U (r, ‘$ (2, t)), where u (r, q) and 
U (r, q> are the functions given by Condition 1 in [4]. 

Lemma 2. The function k (z, t) is continuously differentiable on Ii, 

6% (2, t)l& = - O*(t) $ (2, t) 

ah (z, Q/at = - (1c, (z, t).n@ (t) G (z, t)) 
here (@* (t) is the operator adjoint to operator @ (t) . In particular, 

Finally, we are easily convinced by direct calculation that the function h (2, t) 

continuously differentiable on D, and 

3% (z, t) _ ( a% (:, t) 
ata- azat .G (z, t,) 

Let us assume that the function 8% (z, t)/ata is differentiable on D. 
Theorem 1. Let z,, E R \ M, T, = T (z,,) < -k 00 be such that 

Then, if the time T, = T (zo) is optimal, 

H (zo) = 
a3h (zo, To) 

at3 - 
a3h (“’ To) .G (zo, T,) azatJ 

Proof. Let 

z (s) = d,(s) [z, - j CD (- r) [u (To - r, (p3) - v (To - I^, %)I dryi 
0 

Then it is easily verified that 

h (z (s), T, - s) = U, n@ (T, - s) z (s) = W (To - wo) 

is twice 

(2.3) 

(2.42 

(2.5) 

(%.ti) 
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so that (see (2.2)) (z (s), T, - s) E D; $ (z (s), T, - s) = (pO and 

G (2 (s), T,, - s) = Cz (s) - u (T, - s, cp,,) + 2, (T, - s, cpo) == 
dz (s)lds 

Therefore, in correspondence with (2.3) and (2.7). 

(1 _ ( ah (2 (4, To - 4 
i ( = d’h (z (s), 7-0 - s) az (s) ’ Z”h (z (s), 7’” - s) 

(1.7 at azat 
.- - 

(IS J ata 

hence, by virtue of (2.4), 
ah(Z(S),To-s) _ 0 & 7-7 .YE [O, T,] 

Since T (zo) is optimal, by virtue of Theorem 2 in [4] 

h (2 ($7 r) G 0, ‘t E [O, T, - sl 

which together with (2.6). (2.8) yields 

i;% (z (+:r” - s) s 0 

Combining (2.4) and (2.9) we obtain (see (2.7)) 

(2.7) 

0 

(J.8) 

(2.9) 

0 > lim _!- 
s--r+0 s 1 

#h (2 (s), Tu - s) _ a% !;; T”) 
i3tz 1 

= 

i 
8% (20, TO) az (s) 

I 1 

ash (zo ( 7’“) - 
hat2 .ds- s=o at3 

= - H (20) 

Q.E.D. 
Lemma 3. Let p (z, t) be a thrice continuously differentiable function, positive 

on fi and let P’ (z, t) = p \z, t).h (2, t). Then, if Z, E & \ M satisfies (2.4), 
then 

y (~0) = 
SF (Z”, To) 

at* @F (?* ‘I”) . Giz,, T,)) z I” (zo, T,) . H (z,,) 
dad@ 

Proof. Direct differentiation yields 

a3F 

dz6t' 
a+ ah 

+ at; dz 

Accoeding to (2.4) the first, second and third terms vanish at the point (so, TO) E D . 
So that at this point 

The second term equals zero by virtue of (2.3) and (2.4). while the third equals zero by 
virtue of Lemma 2 and of (2.4). Analogously, we convince ourselves that 

8°F (zo, To) 
- P Go, To) 

@h (ZO. 7’“) 
dtJ .- dl” 

This completes the proof of the lemma. 
From Lemma 3 and the obvious equivalence conditions 

it follows that Theorem 1 remains in force if in its statement the function h (z, t) is 
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every where replaced by F (z, t). 

3, ‘I%e necessary optimality candition in [4] is tied to a given point zo. Below we 
present the necessary condition for the global optimality of the time T (z) of the upper 
layer, i.e. the optimality of II’ (z) at each point of space R. 

Definition. A point &I E R is called “singular” if there exist numbers 0 < 

Tl C To < -t 00 such that (T, = T (z,)) 

h (zo, t) < 0, t E [O, T,) i-j (T,, To); h (zo, To) = 0 (3.1) 

I Q* (T,) ‘~1 1 CD* (To) (po # I Q* (To) ‘po I @* CT,) ‘PI (3.2) 

(cpo.@ (To) [u (T,, cpo) - 2, (To, cpo) - u (T,, CPI) + 2, (TI, VI)]) < 0 
(3.3). 

Here ‘p. = 11) (zo, To), ‘pl = 4 (20, T& 

Theorem 2. Let a singular point z. exist for problem (1.1). Then in R we also 
find a point z* for which the time T (z*) < + 00 is nonoptimal. 

Proof. We set 

b = 1 @* (To) cpd I CD* (T,) cpl - I CD* CT,) ‘PI I a,* (To) (PO 

then (see (3.2)) (cpi. 0 (T,) b) > 0. By virtue of the continuity of the function 
“$ (5 t) (see Lemma 1 and inequality (3.1)) there exists E E (0, To - T,) r\ (0, T,) 
such that 

($ (so, 0.0 (0 b) > 0, t E E, = [T, - E, Tl + EJ 

We take an arbitrary infinitesimal sequence 61 > 0, i = 1, 2, . . . and we set 

3Lt = min 1 h (zo, t) I > 0, t E IO, To - Sil \ E, 

y = max I(4 (zo, 0.a (t> 4 I, t E IO, To1 

zi = ~0 + sib, i=l,2,... 

where CLI = ‘lzh#i + 0 as t + co. Then for all t F [O, To - St] 

a (zi, t) < (I+ (zo, t).IJJ’(t, $ (~0, t)) - n@ (t) (zo + aib)l) = 

h (~0, t) - ai ($ (~0, t)*@ (t) b) < 0 (3.4) 

Since (cpo-@ (T,) b) < 0, by virtue of bernma 1 the inequality 

pi = ($ (zi, To).@ (To) b) < 0 

is fulfilled for all sufficiently large i. Therefore (see lemma 1, [4]) 

’ (Zi, To) = (‘4~ (Ziy To)*[W (To, $J (sit To)) - n@ (To) (~0 + sib)]) = 

(9 (zi, To).[W (To, 4 (zirTo)> - W (To, rpo)l) - aipi > o (3.5) 

Comparing inequalities (3.4) and (3.5) we obtain Ti = T (zi) E [To - di, ToI for 
all sufficiently large i, so that 

Ti-+ To, i--+zX? (3.6) 
In accordance with lemma 1 

$i = ‘P (si) = $ (Zi, Ti) +zl, (ZO, To) = ‘PO, ’ + 00 (3.7) 
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Let us show that the time T (zi) is nonoptimal for sufficiently large i (this also com- 
pletes the proof of the theorem). We assume the contrary ; let Ti be optimal for any 
i = 1, 2, . . . . We propose that the pursuer, starting from the point zi, chooses his own 
control Ui (r), 0 < r < &i = CZi”2 as follows: 

ui (r) 3 u (Tr + ai - ~7 $ (si, Ti + ai)) 

By virtue of the assumed optimality of time T (zi) the pursued can so choose his own 
control ui (r), 0 < r < &i, that the inequality 

h (zi (ai), Ti - 4 < 0, h (G (4, T,) < u (3.8) 

is fulfilled for the motion 

zi (t) = CD’(t) (zi - (c@(- r) [ui (r) - vi (r)] dr) , tE5 [O,FJ 

0 

Otherwise we would have either T (zi (ei)) ( Ti - &i or T (zi (Ed)) < T, and, con- 

sequently, T (zi (ai)) < Ti - ei for all sufficiently large i, whence, according to The- 
orem 1 from [4], would follow the nonoptimahty of T (zi) , i.e. a contradiction. 

Let us show that system (3. 8) is nevertheless contradicted for all sufficiently large i 
and that, consequently, the assumption that T (zi) is optimal is false. We set 

‘pi = $ (zi (G), T,), 0i = 9 (si, Tr f Q); hi = h (Zi, 1’1 + Ei) 

After manipulations (see Lemma 2 of [4] and Lemma 1) the second of inequalities (3.8) 
yields 

0 > h(Zi(Ei), T,) = ((pi* [w (T,, %> - w (Th %)I) + 

T,+E~ 

lQpi.ei)+ (cpi s ~(‘)lu(S,ei)-ui(l’l+Ei-S)lcls)~ (3.9) 
T1 

TISEi 

Selecting, if necessary, a subsequence from {Q}& , we can assume that 
5 

]irnL\ ui(r)dr = v,,E Q 
i-Ku &i o 

(set Q is a convex compacturn !) . 
Further, by virtue of formula (3.4). for all sufficiently large i 

J hi I< 1 A. @ll, T, + 4 I + 297 (3.10) 

Since h (z,, t) is a differentiable function of parameter t, taking the maximum value 

h (so, T,) = 0 at the point t = T, , 

h (zo, TI 4 EJ -> ah (zo, Td = o 
at I i-m 

‘i 

The latter relation together with (3.10) yields 

\ hi 1 $-> 0, i--too (3.11) 
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Finally.since Zi -+ 2,; Zi (Ei) t z,, by virtue of Lemma 1 we have rpt + ‘$ (ao, 
T,) = ‘pl and 8i + ‘pl. Consequently,(the function 8 (r, rp) is uniformly continuous 
on [T,, T,] x K ; see Condition I in [4]) 

Tcm:;+E (v(s,ei)--U(T,,cp,)140, i-00 (3.12) 
1,s. 1 5 

Dividing inequality (3.9) by Ei > 0 and passing to the limit as i +- co, we obtain, 

using (3.11) and (3.12), 1 _ (cp..e,) 
0 > cl lim a.’ + (W@ (T,) [n Pi, cp1) - %I) 

i+m 2 
Both terms on the right-hand side of the obtained inequality are nonnegative, therefore, 

according to Condition 1 in [4], u0 = v (T,, cp&. 

After manipulations the first of inequalities (3. 8) yields (here Xi = ‘II, (% (Ei), Ti - 

Et) and c = min c (t), TV [T,, T,]; c> 0 (see lemma 2 in [4]) 

0 > h (z~(Q), Ti - &i) = (xi* [W (Ti - Ei, xi) - W (Ti - ~7 $i) - 

Ti 'i 

s Q((s') lu (5 1134 - u(s, Si)I ds + ’ @(Ti 
Ti-ci I - r) [ui (4 - ui 091 dr-1) > 

0 

C* (1 -(%*9i))- (Xi* 9 0 $9) [U(s, Si) - u(sv Si)l ds) + (3.13) 
Ti-Ei 

% 

s 
(Xi*@D(Ti - r) [U (T, + Ei - r, et) - ui (r)]) dr 

0 

Dividing both sides of (3.13) by ei > 0 and passing to the limit, we obtain 

O>clim 
1 - (Xi’*J 

‘i 
- (cpa. 0 (To) Iu (T,, cpo) - u (To, %)I) + 

i-hoc 
(cpo4 (To) Iu (TI, CPI) - u (Tl, %)I) 

Here we have used the uniform continuity of the functions u (r, cp) and u (r, ‘p) on 
[T,, To1 X K, formula (3.7), and the relations xi --t (pa, Bi + (pr, ‘ + 00. Since 
the first term is nonnegative, the inequality obtained contradicts (3.3). The theorem is 
proved. 

Thus, the necessary condition for the global optimaliq of time T (2) consists in the 
absence of singular points s in space R. 

4. Let us additionally assume that 0 E p, 0 e Q and that 

am Mp = dim MQ = dim L (4.1) 

where MP and MQ are subspaces of lowest dimension containing P and Q , respectiv- 
ely. In [3] it was shown that the condition 

u (r, cp) = u (cp), 2, (r, rp) = 8 (rp), r > 0, cp E K (4.2) 

together with the condition of complete sweeping is sufficient for the optimality of time 

T (2). 
Theorem 3. In order for (4.2) to hold,it is necessary and sufficient that there exist 

continuous positive scalar functions f (r) and g (r), r > 0, and linear homeomorphisms 
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A : Mp -+ L and 3 : MQ -+ L such that for all r > 0 

~~(~)~~=~(~)A~, PEP G=f 

n CD (r} u = g (r) Rr:, VEQ 

We carry out the proof for the parameter u (it is analogous for v ). Let (4.3) he ful- 
filled. By definition, 

0 ( GP@ (r) Ia (r-7 9) - 4) = f (~1 fcp.A ts fr, qP) - ulf, TV b-4 7E; JA E p 

so that ZJ (r, (p) gives a strict maximum to the expression (rp”Rn), IE E P, whence 

(4.2) follows, 
Conversely, let (4.2) be fulfilled. According to Condition 1 of [4] the interior of 

n 0 (r) P is nonempty in L , therefore, it follows from (4.1) that for any r $> 0 the 
mapping zr (r) = ?t @ {r) : Al P -+ L is a linear “onto” homeomorph~sm and, hence, 
its adjoint mapping ?: (r) = SE* (r) : L -_) &rp also is a linear “onto” mapping [6]. 
We take arbitrary $ E Mp, 1 I/I 1 = ‘l and r > 0. Let Cp (I#,, r) E K be suc.h that 

z P) q, (91 r) 
Q = 1 t (4 cp (9, 4 I_ 

The maximum of the right-hand side of this equality is reached on the unique vector 
u (Cp (q; r)) and, consequently, also the maximum of the leftwhand side which, however, 

does not depend on r. Therefore, u (‘p (9, I;))= u (‘p (I#, r2)) is fulfilled for any 
r,, 7, > 0, Further, by virtue of the iocaf convexity of the surface z CD (r} u ( K, we 
can find cI > 0 fsee Lemma 2, [4f) such that 

0 = (q3 (Q, r,)*n@ 0”) [u (9 (4, 4) - g (cp (9, ra>)lI > Cl (1 - 

(cp (9, r&0(% f4) > 0 

We fix T > 0. kt cp E K and ‘IC, = ‘c (Y’) q/t ‘G(T) cp 1. 
what was said above, rp = q (9). Therefore, by virtue of (4.4)” 

~~~~~~~~~~~~~~~~~, f@,(P) = lxfr)rp I 

Then in accordance to 

for any r > Q. Let us show that f (r? tp) does not depend OR rp. Indeed, ler ~$3~ and ‘pa 
be linearly independent vectors from K. Then the vectors Z (T) ‘pl and IY (T) cpa are 
linearly independent (‘C (T) is a homeomorphism !). Therefore, from the trivial rela- 
tion 

we obtain 
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for any (pl, cp2 E K, r > 0 . 

7(r)cp=f 
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Thus, there exists a function f (r) > 0 such that 

(r).)((~)rp; r>o, cp~K (4.5) 

Multiplying (4.5) scalarly by u E P and using the arbitrariness of ‘p, we obtain 
rt @ (r) U f f (r) n Q, (T) u for all u cz P, r > 0. Hence, in particular, follows 
the continuity of f (I”). The theorem is proved. 

6. Jet 

O<T, = T(G)< + 30, ‘PO = cp (20) 

I (t, r) = h (0 (t) [za - j @ (- r) [u (T, - r, qb) - u(T, - r, cpdl @j, T) . 
0 

It was shown in [4] that the inequality 

1 (t, r) < 0; t>o, z>o, t+z<‘T, (5.1) 

must necessarily hold for the optimality of time T (zo) . kt us consider one important 
special case for which the verification of inequality (5.1) is considerably simplified. 

We assume that the hypotheses of Theorem 3 are fulfilled for problem (1.1) and 

AP = BQ = S (5.2) 
and also that 

w, = IS, 229 (5.3) 

Then n@ (r) u (cp) = f (r) cp; n@ (r) u (cp) = g (r) ‘p; W (t, cp) = h (t) Cp, 
where 

h. (r) = l + { [f (r) - g 091 dr > 0, t>o 

(see Condition 3, [4]); 3L (z, t) 1 h (t) - 1 n0 (t) z 1, T,-, = T (z,,) is the smallest 
nonnegative root of the equation 

F (z,,, t) = h2 (t) - In@ (t) zo12 = 0 (5.4) 

Here and subsequently we have used the function j’ (2, t), more suitable than h (2, t), 
having the same roots. Finally, rp (za) = no (1’s) z,/h (2’0). 

Theorem 4. If relations (5.2). (5.3) have been fulfilled for problem (1. l), then 

inequality (5.1) holds if and only if 

1 (r, Ti) < 0, O<t&TT, -Ti, i=i, ?...,m (5.5) 

where 0 < T, ,( T, < . . . ,( T, are all points of local maximum of the function 
h (t) considered on the interval LO, j”,,] (in particular, these points may turn out to be 
the endpoints of the interval). 

Proof. The necessity of formula (5.5) is obvious. Let us prove the sufficiency. To 
the contrary, suppose that inequalities (5.5) have been fulfilled but that there exist 

to > 0, z. > 0, t, + q, < T, such that 

h (0 (t,) [z. - !Q, (- r.) [u (cpd - z: (cpdl dr] , T”) >o 

O or equivalently (see (S. 4)) , 
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WTJ - Ih (c3) ‘PO - y I2 > 0, Y = h (‘Go + to) ‘PO - Jq’Go + t&o 

Hence 
- I Y I2 + 2% (‘Go) a > 0, a = (cpo-Y) (5.6) 

and, in particular, 
a>0 (5.7) 

From the definition of T (z,,) and from the inequality TO + t, < To we have (see 

(5.4)) 

or equivalently 
- I y I2 + 2% (“0 + to) a ( 0 (5.8) 

Subtracting inequality (5.8) from (5.6). we obtain 

2a (h (‘60) - h (20 + to)) > 0 

whence, by virtue of (5.7), h (‘GJ > h (to $ to). 
kt T* = Ti, be a point of local maximum of the function h (t) on the interval 

IO, ToI, such that T*< z. -I- to and h (T*) > h (‘to). Then (see (5.7)) 

2a (h (T*) - h (c,)) > 0 

Adding this inequality to (5.6) we have 

h2 (T*) - ) n@ (q + c,) z, - (h (‘to + to) -h (T*)) ‘PO 1 2 > o 

This is equivalent to the inequality 1 (t*, T;,) > 0, where t* = t, j- t,,- T* > 0, 
which contradicts (5.5). The theorem is proved. 

By a verbatim repetition of the arguments presented above it is easy to see that the 

assertion of Theorem 4 remains in force if inequalities (5.1) and (5.5) are replaced, 

respectively*by r(t,T)<O, t>o, -c-&o, t+z<T,=T(q,) (5.9) 

I(t,Ti)<O, t>o, t<T,-Ti, i=l,..., m 

6. It turns out that condition (5.9), even in combination with (5.2). (5.3). can prove 
to be insufficient for the optimality of time T (20) if the condition of complete sweep- 

ing (see [3]) is not fulfilled on [(I, To] . 
Let us illustrate what we have said by an example. In problem (1.1) (for convenience 

we write column-vectors in rows) let zi, z2, zs, z4, zgr q, 6 be v-dimensional vectors 

(v > 4) z = (z,, zs, z3, ZP, z5), [l@1<<1, 181,<1, h=iOO 

u = (1009 + h$, 0, 840$, 0, SSOQ), u = (he, 3406, 0, 13206, 9) 

0 1 0 0 0‘ 
00100 

c=oooi 0, 111 I= MO = {z: Zl = 0) 
0 0 0 0 1 
0 0 0 0 0 

Then, as is easily verified, 
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lc?ttI,(t)z=zl+ tz2++z3 + &*+~zs 
IUD (r) u = f (4 $7 f (r) = 100 + h -t 4209 + 40r4 

n@ (r) u = g (r) 8, g (r) = h + 340r + 2209 

h (t) = 23 14 + (3,'33t - 1)(t - i)"] > 0 

So that conditions (5.2), (5.3) are fulfilled, 

Let (PO, ‘pl, ‘pz, (p3 be v-dimensional unit vectors such that (~p,~~~) = 2i/23 and 
(Cpiecpi) = 0 for i # i in the remaining cases. Let S > 0, n = 2r/3-. We consider 
the initial state z0 = (z,,, zzOt zsOt zaO, zso) where 

Then 

zio = 16~0 + Qp, 
2.20 = - 64~ + 92v, + i~‘pz - i/n 6% 

z3,, = 192yr, - 276~~ - 511’~~ 

Zl$J = - zsc# = - 384% + 552% + 1211% 

n@ (t) zo = 16 (1 - t)4 cp, + 23 [i - (1 - t)4] ‘pi + ‘/z p.~t (2 - t) (1 - t)2 ‘pz + 

‘I, s2 (2 - t) (p3 

Direct calculation yields 

F (20, t) = h2 (t) - 1 SD (t) z. 1.2 = - (2 - t)a [2 (I - t)* Pr (t) + l/*641 

pa (t) = 32 + 240t - 79t2 + 184t3 - 32t* > 0 on IO, 21 

SO that 7’0 = 2’ (20) = 2, v (20) = vo. Further, T* = 1 is the single point of local maxi- 
mum of function h (t) on [O, 21. Therefore, by virtue of Theorem 4, condition (5.9) also 
is fulfilled, because 

tE(O, To - T*) 

Here VP it) = 64t* - 32t3 _t 446P + 924t -+ 630 > 0 on [o, I]. 
However, the time To = T (zo) is nonoptimal for sufficiently small %> (for examole , 

for 8 = 10e8). The proof of this fact is easily carried out by contradiction by a verbatim 
repetition of the arguments in Sect. 3, by assuming that T (zo) is optimal and by propos- 

ing that on the interval (0, 81 the pursuer sets his own control equal to 

?I@ (T” + S) 20 *w=v = IxcD(T*+s)-_oI 

In other words , u(r) s u (cp*), 0 <r < 6. The possibiliv for such a path to the proof is 
connected with the fact that the point z0 is singular when 8 == 6 . 

7. For linear pursuit problems studied in Sect. 5, i, e. satisfying conditions (5.2). 
(5.3). what we said in Sect. 2 takes the following form : 

D = ((2, t) : 1 nc%, (t) 2 1 > O}, Q (2, t) -z- n@ (q 21 In@(t) z I 

p (Z? t) --~I h (t) -c_ \nB (t) z / 
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SO that the function F (z, t) of Lemma 3 is given by the left-hand side of formula 

(5.4). By differentiating with respect to r from formulas (4.3). (5.2), (5.3) we obtain 
that n@ (r) [u (cp) - 0 (cp)l = h’ (r) cp 

nCD (r)C [u (cp) - u(q)1 = h”(r) cp 

n@ (r) C2[u (cp) - u (cp)l = h”‘(r) cp 
(7.1) 

Here we have used the relations 

CD’ (r) = @ (r) C , @’ (r) = @ (r) P, h’ (r) = f (r) - g (r) 

Condition (2.4) is rewritten as 

aF (“0, To) -- = 
at. 

2h (T,) [h’ (2’“) - (q,.‘Prl)] = 0, ‘PI = n@ (T,) Cz, (7.2) 

a!F (zo, To) = 
ata 2 {h (2’“) h” (I’,) t [h’ (To)12 - h (To) (~0. 'F,) - I YI 1") = 0 

Y2 = n@(z-o)C2z, 

The first of these equalities yields ( 1 q. [ = 1) 

In@ (T,)czo I a h’ (To) (7.3) 

The function F (2, t) is infinitely differentiable on D. By directly computing the 
left-hand side of (2.5) we obtain (see the definition of G (z, t) and the formulas(7.1)) 

r/J (ZO) = ( 0) h T h”’ (T,) + 3h’(T,,)h” (T,) -h (T,) (‘PO.“@ (T,)C3zo - 

3 (Y,.Y~) + {(n@(T,) G (zo,To).YJ + h (T,)(cpo.n@(To) C2G (+ To))+ 

2 (Yl.n@ (To) CG (zo, To)) > = 

3h’ (To) h” (T,) -h’ (To) (cpo.YJ - a” (To) (cpo.Y~) 

Applying (7.2) we finally obtain 

Y (z!J) = * : 1 x@ (To) Cz, I2 - I h’ (To) 1’) 

Therefore, if h’ (T,) > 0, then by virtue of (7.3) the necessary condition (2. S) is 

fulfilled. If, however, h’ (T,) ( 0 and [ ncD (T,) C z. 1 > 1 h’ (T,) 1, then the 
time To = T (20) is nonoptimal. 

Lemma 4. Suppose that conditions (5.2) (5.3) have been fulfilled for the pursuit 

problem (1.1). Let relation (3.1) be fulfilled for a point z, E R , and h’ (T,) < 0. 
Then, in order that point zO be singular it is necessary and sufficient to fulfill the non- 

equality ‘Pi # 90. 

Proof. If 91 = 'PO, condition (3.3) is not fulfilled and, consequently, point z. is 
not singular. If, however, ‘pl # ‘po, then by virtue of (5.2). (5.3) 

(‘PO.@ (To) {U (To, cp,) - V (To, cpo) - u (T,, cp,) + y (TX, MN = 

h’ (To) (1 - (cpocp,)) < 0 

SO that inequality (3.3) is fulfilled. 
Let us show that relation (3.2) also is valid. Let 
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cm* (TOI Qo = B@” Vl) ‘PI (7.4)‘ 

Here a = 1 CJ* (T,) ‘pl 1, f3 = 1 @,* (T,) rpo 1. Then multiplying (7.4) scalarly by u (Qd) 

and u ((pi), we obtain 

of (T,) = Bj (T,) bP0~%)~ af (To) (Qo.Qi) = fir (T,) 

Hence (Q,-,-cpl) = 1 and so ~1 = 'po. A contradiction. 

The author thanks E, F. Mishchenko for attention to the work and for useful comments. 

BIBLIOGRAPHY 

1. Mishchenko, E, F. and Pontriagin, L. S., Linear Differential games. 

Dokl. Akad. Nauk SSSR, Vol. 174, Nl. 1967. 
2. Krasovskii, N. N. and Subbotin, A. I., Optimal strategies in a linear 

differential game. PMM Vol. 33, N’4, 1969. 
3. Gusiatnikov, P. B. and Nikol’skii, M. S., On the optimality of pursuit 

time. Dokl. Akad.Nauk SSSR, Vol.184, N”3, 1969. 

4. Gusiatnikov, P. B., Necessary optimality conditions in a linear pursuit prob- 

lem. PMM Vol. 35, p5. 1971. 

5. Pshenichnyi, B. N., Necessary Conditions for an Extremum. Moscow, “Nat&a”, 

1969. 
6. Dunford, N. and Schwartz, J. T. , Linear Operators, Part I: General 

Theory. New York, Interscience Publishers, Inc., 1958. 

Translated by N.H.C. 

UDC 62-50 
IMPULSE TRACKING OF A POINT WITH BOUNDED THRUST 

PMM Vol. 37, Np2, 1973, pp. 217-227 

G. K. POZHARITSKII 
(Moscow) 

(Received February 24, 1972) 

We examine the game problem [l - 31 of the contact of two material points 
with unit masses moving in a three-dimensional space under the action of only 
the controlling forces F1 and F, arbitrary in direction. It is assumed that force 
F1 is bounded in momentum, while F, , in absolute value. In parallel we consi- 
der two problems on the minimax time up to “hard” (with respect to the coordi- 

nates) and up to “soft” (with respect to the coordinates and velocities) contact. 
In both problems the whole space of positions is divided into two regions. The 
optimal controls of the first (the minimizing) player (point) and of the second 
(the maximizing) player (point) are formed in the first region and the minimax 
time computed as well. The second player’s control permitting him to evade 
contact under any action of the first player is formed in the second region. A 

comparison is made with a previously-considered case [4] in which both points 
can move along certain fixed straight lines. 


